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Abstract. We apply combinatorial Dyson–Schwinger equations and
their Feynman graphon representations to study quantum entanglement
in a gauge field theory Φ in terms of cut-distance regions of Feynman
diagrams in the topological renormalization Hopf algebra Hcut

FG (Φ) and
lattices of intermediate structures. Feynman diagrams in HFG(Φ) are
applied to describe states in Φ where we build the Fisher information
metric on finite dimensional linear subspaces of states in terms of homo-
morphism densities of Feynman graphons which are continuous function-

als on the topological space SΦ,M⊆[0,∞)
graphon ([0, 1]). We associate Hopf sub-

algebras of HFG(Φ) generated by quantum motions to separated regions
of space-time to address some new correlations. These correlations are
encoded by assigning a statistical manifold to the space of 1PI Green’s
functions of Φ. These correlations are applied to build lattices of Hopf
subalgebras, Lie subgroups and Tannakian subcategories, derived from
towers of combinatorial Dyson–Schwinger equations, which contribute
to separated but correlated cut-distance topological regions. This lattice
setting is applied to formulate a new tower of renormalization groups
which encodes quantum entanglement of space-time separated particles
under different energy scales.
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1. Introduction

Recently, we applied theory of graphons to obtain some new analytic and
computational tools for the study of non-perturbative solutions of quantum
motions, encoded by Dyson–Schwinger equations, in gauge filed theories
[25, 26, 27, 28, 29, 30, 31, 33, 34]. The space of Feynman diagrams of a gauge
field theory can be topologically completed with respect to the topology of
graphons [28, 29]. This topological enrichment is useful to formulate random
graph representations for solutions of combinatorial Dyson–Schwinger equa-
tions [26, 28, 29, 34]. This research work presents some new applications of
Feynman graphon models in designing a new algebraic approach to quantum
entanglement in gauge field theories. For a gauge field theory Φ, we associate
a particular class of commutative Hopf subalgebras to space-time regions.
They are Hopf subalgebras of solutions of quantum motions in Φ which can
be topologically completed by using the space of Feynman graphons. We
introduce basic states in Φ in terms of 1PI primitive Feynman diagrams of
the renormalization Hopf algebra HFG(Φ). We relate our new framework to
Reeh–Schlieder theorem where we build non-zero correlations between sep-
arated cut-distance topological regions of Feynman diagrams, as space-time
diagrams, such that each region of this type corresponds to a space-time re-
gion. Thanks to the homomorphism densities of Feynman graphons [28, 29],
we introduce the Fisher information metric on finite dimensional linear sub-
spaces of qft-states and then develop it to build a new statistical manifold
associated with the space of 1PI Green’s functions of Φ. Thereafter we ex-
plain the structures of lattices of Hopf subalgebras and Lie subgroups built
on the cut-distance topological regions of Feynman diagrams in Φ which con-
tribute to solutions of towers of combinatorial Dyson–Schwinger equations.
These lattices encode information flow between space-time separated parti-
cles at qft-states in terms of intermediate algorithms which encode non-zero
correlations between separated regions of space-time. In addition, we relate
a lattice of Tannakian subcategories to quantum entanglement to build a
renormalization group program. A tower of renormalization groups is built
to show the compatibility of this new lattice setting under changing the
energy scales in the physical theory.
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1.1. Entanglement: From quantum mechanics to quantum field
theory. Quantum mechanics associates some probability values to final
states of physical systems of particles with microscopic scales in terms of
the information of their initial states. The transition amplitude from the
initial state to the final state is defined as a sum over all (unobserved) in-
termediate states. In entangled systems, the outcome measured by the first
experimenter in one coordinate is interconnected with the choice made at
the last moment by the second experimenter in another coordinate while
no information can travel from those coordinates within a pre-stipulated
period of time without moving faster than the speed of light. There exist
certain observables which can not consistently be assigned values at all. The
evolution of a quantum system can be encoded in terms of the Schrodinger
equations between measurements at which they collapse to the eigenstates
of the measured variables. In non-measurement interactions, the evolution
of states can be studied in terms of a linear and unitary equation of motion
while the particle pair in the Einstein–Podolsky–Rosen experiment remains
in an entangled state. Therefore in a spin measurement, the pointers of the
measurement tools are entangled with the particle pair in a non-separable
state such that the indefiniteness of spins of particles is transmitted to
the pointer’s coordinate. However the notion of measurement is the key
problem in this approach to quantum systems where adding a non-linear
term to the Schrodinger equation can be useful to deal with this challenge.
[13, 18, 19, 23]

Quantum field theory is built on the basis of quantum mechanics and
special relativity where there exists an equivalence between matter and en-
ergy. Incoming particles collide and generate some outgoing particles with
different nature while the momentum energy tensor is conserved. Initial
and final states represent a fixed number of particles with assigned energy
values. However unobserved intermediate states can involve any number
of virtual particles with arbitrarily energy values which diverge when the
upper limit of the energy of the virtual particles tends to infinity. If some
parameters of a given physical theory (such as masses and coupling con-
stants) are chosen as functions of the energy scale, then we can expect to
generate some finite values in terms of perturbative renormalization. Strong
running coupling constants in gauge field theories generate non-perturbative
aspects where perturbation theory fails to compute non-perturbative param-
eters. Non-perturbative aspects are encoded in terms of towers of strongly
coupled Dyson–Schwinger equations derived from fixed point equations of
Green’s functions. Solutions of these (systems of) equations are presented
in terms of infinite power series of running coupling constants with higher
loop order Feynman diagrams as coefficients. [9, 22, 30, 36]

Quantum entanglement in quantum field theory is one of the most impor-
tant research topics in theoretical high and low energy physics [2, 3, 7, 8].
Quantum entanglement between particles in separated space-time regions
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has been considered in terms of tracing over the spinor or vector compo-
nents and different fields as an intrinsic measurable physical property in
relativistic models [35]. In this setting, a particular momentum-spin mode
defined by a free single particle basis state may not be directly measurable
because of renormalization. Reeh–Schlieder theorem in algebraic quantum
field theory describes quantum entanglement under the notion of locality
such that it involves entanglement between degrees of freedom inside an
open region in the Hilbert space H of states and its causal complement.
In this setting, bounded algebras of local operators assigned to separated
space-like regions provide non-zero correlations. In other words, any open
region U in Minkowski space-time is decorated by a local algebra consisting
of all operators supported in U . Then it is shown that each arbitrary state in
H of a quantum field theory can be approximated by AU | $0〉 with respect
to the vacuum state $0 ∈ H and some local operator AU supported in U .
The operator AU acts on $0 to generate the state

(1) ψ(x1)...ψ(xn) | $0〉 = AU | $0〉

such that x1, ..., xn ∈ U while ψ(xi) are field operators defined in AU . States
AU | $0〉 are dense in H. The action of AU on $0 can approximate another
state in a space-like separated region V from U . In the vacuum state,
two operators, which are supported in the separated space-like regions U
and V , can be recognized such that they do not commute. This produces
a non-zero correlation function which guarantees quantum entanglement.
While the Hilbert space of quantum field theory does not factorize, Tomita–
Takesaki modular operators are applied to analyze quantum entanglement.
[11, 24, 37, 40]

1.2. From Feynman diagrams to Feynman graphons. Feynman dia-
grams are main tools for the combinatorial presentation of Green’s functions
in gauge field theories. Feynman rules associate an iterated ill-defined in-
tegral to each Feynman diagram where sub-divergences in the integral are
encoded by nested loops. The superficial degree of divergence determines
the type of divergence or convergence of a loop in its integral presentation.

Definition 1.1. A Feynman diagram is a space-time oriented decorated
diagram Γ such that it has the following properties.

• Under charge conjugate, parity reversal and reversing the flow of
time, a matter particle is exactly the same as its anti-matter particle
in Γ.
• Γ has a vertex set Γ[0] which presents interactions between particles

in the diagram. An interaction is allowed if it does not violate rules
of the Standard Model.
• Γ has an edge set Γ[1] which presents particles. The subset Γ

[1]
int,

which contains edges with beginning and ending vertices, encodes
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virtual particles. The subset Γ
[1]
ext, which contains edges with begin-

ning or ending vertex, encodes elementary particles in the physical
theory.
• Objects of Γ[1] are labeled by momenta information where at each

vertex momentum conservation law is valid.

The BPHZ perturbative renormalization provides a recursive machin-
ery for the removal of sub-divergences from integrals to extract some finite
values. This renormalization program, built in terms of the (Bogoliubov–
)Zimmermann’s forest formula, is encapsulated by the coproduct

(2) ∆(Γ) = Γ⊗ I + I⊗ Γ +
∑
γ⊂Γ

γ ⊗ Γ/γ

such that the sum is taken over all disjoint unions of 1PI divergent proper
subgraphs [4, 14, 17]. If the sum is over all proper subgraphs, then we have
the core version of this coproduct which is useful for generalized physical
theories such as quantum gravity. However we use the phrase ”Feynman
subdiagram” for those subgraphs which have at least a superficial (sub-
)divergence.

The number of internal edges or the loop number, as the graduation
parameters, are applied to formulate a graded connected commutative non-
cocommutative Hopf algebra structure HFG(Φ) over the field Q on the set
of Feynman diagrams in a gauge field theory Φ which is freely generated by
1PI Feynman diagrams. It is called Connes–Kreimer renormalization Hopf
algebra of Feynman diagrams. [1, 17]

Definition 1.2. For any primitive Feynman diagram γ, define the grafting
operator B+

γ : HFG(Φ) → HFG(Φ) as a linear homogeneous operator. For

each Feynman diagram Γ, B+
γ replaces a vertex in γ with Γ in terms of the

compatibility between types of vertices in γ and types of external edges in
Γ.

B+
γ (Γ) is a formal linear expansion of Feynman diagrams as the result of

all possible replacement choices. From the formula (2), it can be seen that

(3) ∆ ◦B+
γ (Γ) = B+

γ (Γ)⊗ I + (Id⊗B+
γ ) ◦∆(Γ) .

This recursive formula is useful to rebuild Feynman diagrams in terms of
their primitive components and (quasi-)shuffle type products. [4, 14, 16]

The renormalization Hopf algebra has a universal model in terms of the
space of non-planar rooted trees where the renormalization coproduct (2)
is reformulated recursively in terms of the grafting operator and admissible
cuts [4, 16]. The resulting combinatorial Hopf algebra HCK is the graded
connected finite type free commutative non-cocommutative Hopf algebra of
non-planar rooted tress. Using suitable packages of decorations enables us to
represent Feynman diagrams via decorated non-planar rooted trees or their
linear combinations. For example, the collection of primitive 1PI Feynman
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diagrams or the collection of loops can be applied as labels for vertex sets
of rooted trees.

Theorem 1.3. • Consider the category CHopf of pairs (H,L) of com-
mutative Hopf algebras together with Hocschild one-cocycles L : H →
H. A morphism f : (H1, L1)→ (H2, L2) is a homomorphism of Hopf
algebras such that f ◦L1 = L2 ◦ f . (HCK, B

+) is the initial object of
CHopf .
• For a gauge field theory Φ, there exists an injective homomorphism of

Hopf algebras from HFG(Φ) to HCK(Φ) such that trees are decorated
by 1PI primitive Feynman diagrams of the physical theory.
• Fundamental identities between Feynman diagrams in Φ are encoded

by some Hopf ideals I(Φ) of the renormalization Hopf algebra. In
this case, the quotient Hopf algebras HFG(Φ)/I(Φ) can be embedded

into the combinatorial quotient Hopf algebras HCK(Φ)/Ĩ(Φ).
[14, 16, 38]

Therefore Feynman diagrams can be simplified in terms of decorated ver-
sions of rooted trees where the vertex set of each tree encodes nested loops or
sub-divergences in the corresponding Feynman integral. Theory of graphons
for sparse graphs ([5, 6]) allows us to associate graph functions to Feynman
diagrams which leads us to formulate the notion of convergence for the
sequences of Feynman diagrams with increasing loop numbers which have
almost zero density.

Definition 1.4. Consider a gauge field theory Φ.

• For any Feynman diagram Γ in Φ, the adjacency matrix of its rooted
tree representation tΓ determines a bounded symmetric Lebesgue
measurable function PΓ : [0, 1]× [0, 1]→ R which is called the pixel
picture of Γ.
• For an invertible Lebesgue measure preserving transformation ρ on

[0, 1], P ρΓ : [0, 1] × [0, 1] → R is called a labeled Feynman graphon
associated with Γ such that P ρΓ(x, y) := PΓ(ρ(x), ρ(y)).
• Labeled Feynman graphons Z1 and Z2 associated with Γ are called

weakly isomorphic (i.e. Z1 ≈ Z2) iff there exist Lebesgue measure
preserving transformations ρ1, ρ2 such that Z1 = P ρ1

Γ and Z2 = P ρ2

Γ
almost everywhere with respect to the Lebesgue measure.
• Define a unique equivalence class

(4)
[WΓ]≈ := {Z : Z ≈ PΓ} = {P νΓ : ν Lebesgue measure preserving transformation on [0, 1]} .

It is called the unlabeled Feynman graphon class associated with Γ.
• For an arbitrary ground measure space (Ω, µΩ) together with any
µΩ-measure preserving transformation θ, the bounded symmetric
µΩ-measurable function W θ

Γ : Ω×Ω→ R is called a stretched labeled
Feynman graphon associated with Γ.
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Remark 1.5. • For any Feynman digram Γ with overlapping sub-divergences,
its tree representation is a linear combination tΓ = s1+...+sn of dec-
orated non-planar rooted trees. In this case, any Feynman graphon
WΓ is a direct sum of Feynman graphons Wsi which are defined
on the intervals Ii ⊂ [0, 1] such that Ii ∩ Ij = ∅ for all i 6= j and⋃n
i=1 Ii ⊆ [0, 1].

• Stretched Feynman graphons are obtained in terms of the rescaling
of the basic ground measure space or the canonical graphons. Feyn-
man graphons are applied to define a new distance on the space of
Feynman diagrams.

[28, 29, 33, 34]

1.3. Dyson–Schwinger equations. The reformulation of the BPHZ per-
turbative renormalization in terms of the Connes–Kreimer renormalization
Hopf algebra provided several computational tools in dealing with Feynman
integrals and physical parameters in renormalizable theories. In addition,
the applications of this Hopf algebraic school have already been considered
in non-perturbative aspects of gauge field theories where fundamental iden-
tities between Feynman diagrams and quantum motions are encapsulated in
terms of Hopf ideals and Hochschild equations.

Dyson–Schwinger equations, which are generalizations of the Heisenberg
equations of motion, determine quantum motions in gauge field theories.
These equations, which are derived from the interaction part of the La-
grangian, contain coupled systems of integral equations generated by fixed
point equations of Green’s functions. Solutions of Dyson–Schwinger equa-
tions are polynomials with respect to running coupling constants. Regu-
larization techniques replace space-time with a finite hyper-cubic lattice of
points. In this setting, a continuous variable is replaced with a discrete vari-
able with finite range, field and source functions become finite dimensional
variables and the differential operator becomes a symmetric matrix. There-
fore functional derivatives can be replaced with ordinary partial derivatives
where the Fourier transform of the discrete version of Dyson–Schwinger
equations generates a set of first-order partial differential equations [22, 36].
Under a different setting, Dyson–Schwinger equations are reformulated in
terms of the renormalization coproduct and Hochschild cohomology theory
[17, 39].

Definition 1.6. Consider a gauge field theory Φ. Define a complex ({Cn}n≥0,b).
For each n, let Cn be the set of all linear maps from HFG(Φ) to HFG(Φ)⊗n

such that C0 is the field with characteristic zero. Define a coboundary op-
erator b given by

(5) bT := (Id⊗ T )∆ +
n∑
i=1

(−1)i∆iT + (−1)n+1T ⊗ I .

The Hochschild cohomology of the complex ({Cn}n≥0,b) encodes required
information for the reconstruction of Dyson–Schwinger equations. For any
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primitive Feynman diagram γ, bB+
γ = 0 which means that it is a Hochschild

one-cocycle. The grafting operators associated with primitive Feynman di-
agrams determine an important family of generators of the first rank coho-
mology group.

Definition 1.7. For a given family {B+
γn}n≥1 of Hochschild one-cocycles

corresponding to primitive Feynman diagrams {γn}n≥1, the combinatorial
recursive equation

(6) DSE : X = I +
∑
n≥1

(λg)nωnB
+
γn(Xn+1) , 0 < λ ≤ 1

identifies a class of Dyson–Schwinger equations underlying the running cou-
pling constant λg. It is called a combinatorial Dyson–Schwinger equation.

For n ≥ 1, ωn are some constants. We can replace (λg)nωn with c(g)wn
such that c(g) is a function of the bare coupling constant generated by
regularization techniques and wn := c(g)n−1ωn. Therefore the equation
(6) encodes Dyson–Schwinger equations under all possible running coupling
constants.

Remark 1.8. • The unique solutionXDSE =
∑

n≥0(λg)nXn of an equa-
tion DSE is given by the recursive relations

(7) Xn =

n∑
j=1

ωjB
+
γj

( ∑
k1+...+kj+1=n−j, ki≥0

Xk1 ...Xkj+1

)
such that X0 is the empty graph.
• The large Feynman diagram XDSE is an object in the completion of
HFG(Φ)[[λg]] with respect to the n-adic topology.
• Feynman diagrams Xn ∈ HFG(Φ) are generators of a graded con-

nected free commutative Hopf subalgebra HDSE of HFG(Φ). This
Hopf subalgebra is classified by the Faa di Bruno Hopf algebra and
the Hopf algebra of symmetric functions.
• Non-linear Dyson–Schwinger equations, derived from strong (run-

ning) coupling constants, determine non-cocommutative Hopf subal-
gebras while linear Dyson–Schwinger equations, derived from physi-
cal theories with the vanishing β-function, determine cocommutative
Hopf subalgebras.

[10, 15, 17, 39]

Solutions of quantum motions under strong coupling constants generate
infinite formal expansions of powers of coupling constants together with
Feynman integrals with nested sub-divergences as coefficients. In combina-
torial setting, these Feynman integrals are replaced with higher loop orders
Feynman diagrams. Definition 1.7 and Remark 1.8 are applied to repre-
sent these non-perturbative expansions in terms of infinite direct sums of
stretched Feynman graphon models (i.e. Theorem 2.10). The completeness
of the space of stretched Feynman graphons is applied for the interpretation
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of the unique solution of a combinatorial Dyson–Schwinger equation as the
cut-distance convergent limit of a sequence of random graph processes. As
the consequence, a new non-perturbative renormalization program on the
space of quantum motions are achieved. [29, 30, 31, 33, 34]

1.4. Original achievements. Consider a (strongly coupled) interacting
gauge field theory Φ. Thanks to the cut-distance topological space of Feyn-
man diagrams (i.e. Definitions 1.4 and 2.5 and Remark 2.6), the renor-
malization Hopf algebraic approach to quantum motions (i.e. Definitions
1.2 and 1.7 and Remark 1.8) and Feynman graphon representations of solu-
tions of combinatorial Dyson–Schwinger equations (i.e. Definition 1.4 and
Theorem 2.10), here we explain a new mathematical setting for the anal-
ysis of quantum entanglement in Φ in terms of separated but correlated
cut-distance topological regions of Feynman diagrams which contribute to
solutions of towers of combinatorial Dyson–Schwinger equations.

• Primitive Feynman diagrams in HFG(Φ) (determined by Formula
(2)) and the grafting operators (i.e. Definition 1.2) are applied to
introduce qft-states in Φ (i.e. Definitions 1.1 and 2.3). We apply
homomorphism densities of Feynman graphons (i.e. Definition 2.7)
to formulate the Fisher information metric on any finite dimensional
subspaces of qft-states (i.e. Theorem 2.9).
• It is observed that Feynman diagrams, which contribute to solutions

of quantum motions in Φ, are rich enough to encapsulate building
blocks of information flow between separated regions of space-time.
Feynman graphons in the metric space SΦ,[0,1)

graphon,≈([a, b]), which en-
code solutions of quantum motions, are applied to associate some
new topological algebras to space-time regions. See Remark 2.4 and
Theorems 2.11 and 2.12 and Corollary 2.13.
• On the one hand, we associate a statistical manifold equipped with

the Fisher information metric (37) to the space of 1PI Green’s func-
tions of Φ to present correlations between separated regions in the
topological renromalization Hopf algebra in terms of homomorphism
densities of partial expansions of 1PI Green’s functions with respect
to Feynman graphons. On the other hand, towers of combinatorial
Dyson–Schwinger equations in Φ are built in terms of the recursive
process (39). Hopf subalgebras of solutions of these equations to-
gether with their Hopf sub-subalgebras are arranged in some lattice
structures. These particular lattices, which are built on the cut-
distance topological space of Feynman diagrams, enable us to math-
ematically encode information flow between space-time separated
particles at different qft-states (i.e. Theorems 3.1 and 3.4). There-
fore, correlations encoded by homomorphism densities together with
lattices of Hopf subalgebras generated by towers of combinatorial
Dyson–Schwinger equations provide correlations between separated
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regions of space-time. See Theorem 2.16, Corollaries 2.13, 3.3 and
3.6.
• Lattices of Hopf subalgebras of quantum motions are lifted onto the

level of Lie (sub)groups to analyze quantum entanglement in terms of
intermediate algorithms in theory of computation and Galois theory.
See Corollaries 4.1 and 4.2.
• Lattices of Hopf subalgebras of quantum motions are lifted onto

the level of Tannakian subcategories (i.e. Lemmas 5.1 and 5.2) to
provide a new geometric interpretation of quantum entanglement
in gauge field theories in terms of a new tower of renormalization
groups. See Theorem 5.3 and Corollaries 5.4 and 5.5.

2. Correlations between separated regions in Hcut
FG(Φ)

Single-particle states of a non-interacting particle are labeled by quantum
numbers, namely momentum k and other physical parameters u such as
charge, spin, etc. The Hilbert space of states corresponding to this particle
is given by the span H1 = {| ψ〉 =

∑
k,u αk,u | ku〉} such that αk,u are

complex coefficients with respect to all possible values of k and u. The N -
particle Hilbert space HN , as a product of N copies of H1, is determined
in terms of the span of all possible N -particle states. While a pure state is
given when the probability pi0 = 1 for some state i0, the state of a quantum
system is not known and it is determined in terms of a linear combination of
basic states | n〉 with the probabilities pn such that

∑
n pn = 1. This means

that some expectation values can be assigned to observables. [18]
The Hilbert space of quantum field theory includes the space of no-particle

states and the space of all possible N -particle states for any integers N ≥ 1
where N tends to infinity. Therefore this infinite dimensional separable
Hilbert space is a direct sum of subspaces associated with vacuum, one-
particle, two-particles, etc. The interaction terms in Hamiltonian generate
additional particles in 0-particle and one-particle states.

In this section, we review the structure of combinatorial Green’s functions
to describe states in a gauge field theory Φ in terms of the objects of the
renormalization Hopf algebra. Then we apply Feynman graphon represen-
tations of solutions of combinatorial Dyson–Schwinger equations to address
correlations between separated cut-distance topological regions of Feynman
diagrams in the physical theory.

2.1. Fisher information metric between states in a gauge field the-
ory via Feynman graphons. Creation and annihilation operators are
two basic tools in quantum field theory where we concern quantum sys-
tems for which the number of particles can change. Any operator can
be presented as a sum of products of creation and annihilation operators.
The notation | (k1, u1)n1 ; ...; (kl, ul)nl〉 presents a N -particle state in which
each of its single-particle state | kiui〉 is occupied by ni particles such that
N =

∑l
i=1 ni. The creation operator adds one particle to any given state
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while the annihilation operator removes one particle with a specific quantum
number if this particle is present. Any multiple-particle state is obtained in
terms of applying a combination of creation operators to the vacuum. This
setting works for bosons as particles which can multiply occupy a state. The
creation and annihilation operators for fermions are defined in terms of four
cases generated by unoccupied and occupied states. The resulting fermionic
states are antisymmetric under particle interchange. [22]

A space-time field is a trajectory t 7→ φ(t, •) in the space of Klein–Gordon
fields as classical fields. A time-ordered Green’s function is defined by
(8) GN (x1, ..., xN ) = 〈0 | Tφ(x1)...φ(xN ) | 0〉
such that 0 is the vacuum state. The canonical quantization of Klein–Gordon
fields gives their corresponding quantum fields φ̃(t, x) = eitH φ̃(x)e−itH with
respect to the Hamiltonian H. These quantum fields are operators which
can be presented in terms of linear combinations of creation and annihilation
operators. Quantum fields act on the Fock space which is an infinite direct
sum of (anti)symmetrized Hilbert spaces corresponding to a fixed number of
particles. The quantum expectation value of a classical observable is given

by 〈O〉 = n
∫
O(φ)exp

(
iS(φ)

~

)
D[φ] such that S(φ) = S0(φ) + Sint(φ) is the

action functional, n is the normalization factor and D is the measure on the
linear space of classical fields.

Definition 2.1. Green’s functions, as integral over histories, are formulated
in terms of formal expansions of integral polynomials. We have

GN (x1, ..., xN ) = n

∫
exp

(
i
S(φ)

~

)
φ(x1)...φ(xN )D[φ]

(9) =

( ∞∑
n=0

in

n!

∫
φ(x1)...φ(xN )Sint(φ)ndµ

)
.

( ∞∑
n=0

in

n!

∫
Sint(φ)ndµ

)−1

=

(10)( ∞∑
n=0

in

n!

∫
〈0 | T φ̃0(x1)...φ̃0(xN )

∏
j

Lint(yj) | 0〉
∏
j

dyj

)
.

( ∞∑
n=0

in

n!

∫
〈0 | T

∏
j

Lint(yj) | 0〉
∏
j

dyj

)−1

such that ~ = 1 , 〈0 | 0〉 = 1, dµ = exp

(
iS0(φ)

)
D[φ], Lint is the interaction

part of the Lagrangian density and φ̃0 is a free field. [9, 22]

Excitations of quantum fields of space-time determine elementary par-
ticles such that the ground state is considered as the vacuum. Non-zero
energy of the vacuum in interacting theories can be interpreted as creation–
annihilation of particle–antiparticle pairs. The vacuum state in free field
theory is described as a tensor product of the Fock space vacuum states
for each independent field mode. So there is no entanglement between the
field modes at different momenta. However in interacting theories, the full
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vacuum state can be interpreted as a superposition of the Fock basis states
which means that the modes of different momenta are entangled. States
in interacting gauge field theories encode information about these excita-
tions. Each state has information about the number of created particles
from each type of field, momentum, spin, etc. Therefore we can describe
a state in terms of a linear combination of the possibilities corresponding
to 1-particle, 2-particle,..., N -particle wavefunctions such that N tends to
infinity. The computation of a transition amplitude provides only a part of
a quantum state.
Remark 2.2. Perturbation theory concerns intermediate virtual states which
have different types than the initial and final states. These types of states
have uncertain energy scale, but since they are available at only very short
time, they can have the same energy as the initial and final states. Therefore,
without violating the energy conservation, these types of states, generated
by virtual particles, can be considered with some probabilities.

Green’s functions are computed in terms of integration by parts on (10)
where a large number of terms are generated. Following Definition 1.1 to-
gether with Feynman rules of the physical theory, we associate Feynman
diagrams to these terms to formulate a combinatorial version of Green’s
functions. However the computation of the self-energy of the interaction of
a particle generates increasingly number of virtual particles at some energy
scales where perturbation theory fails. Feynman rules in space configura-
tion associate some propagators to vertices and edges in Γ. These rules
label the space-time points of all vertices in Γ and then integrate over them.
Therefore we have integrals over all possible space-time positions of all ver-
tices. Fourier transform is applied to interpret Feynman rules in momentum
configuration where these rules associate some propagators and momenta in-
formation to all internal edges with respect to the momentum conservation
at each vertex.
Definition 2.3. Consider a given gauge field theory Φ with the correspond-
ing renormalization Hopf algebra HFG(Φ).

• Any 1PI primitive Feynman diagram γ identifies a basic qft-state
sγ . The number nγ := |γ[1]| of edges in γ presents the number of
particles which occupy the basic qft-state sγ .

• The subset γ
[1]
int encodes the intermediate qft-states corresponding to

γ.
• Let Γ be a finite connected Feynman diagram built by primitive

components γ1, ..., γs. The notation [s
nγ1
γ1 ; ...; s

nγs
γs ] presents a general

qft-state in which each basic qft-state sγi is occupied by nγi particles.
• For any 1PI primitive Feynman diagram γ, the grafting operator B+

γ

adds a basic qft-state to any general qft-state.

Remark 2.4. • The vacuum in Φ is a homogeneous system of virtual
particles such that its associated intermediate qft-states are invariant
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with respect to the transformations of the invariance group. With-
out violating the conservation law of energy, particles with negative
energy are created and annihilated in the vacuum.
• Each general qft-state associated with a finite Feynman diagram can

be occupied by a finite number of particles.
• A large Feynman diagram XDSE as the solution of a combinatorial

Dyson–Schwinger equation DSE under a strong running coupling
constant λg ≥ 1 (given by Definition 1.7 and Remark 1.8) is built
in terms of an infinite number of applying the grafting operators.
Therefore the general qft-state associated withXDSE can be occupied
with an infinite number of particles.

Consider a gauge field theory Φ and the interval M ⊆ [0,∞) as the
Lebesgue measure space.

Definition 2.5. • Feynman diagrams Γ1,Γ2 are called weakly isomor-
phic (or weakly equivalent) iff [WΓ1 ]≈ = [WΓ2 ]≈. In other words,
Γ1 ≈ Γ2 iff theres exists a symmetric bounded Lebesgue measurable
graph function W : M ×M → R and Lebesgue measure preserving
transformations ρ1, ρ2 on M such that W ρ1 = WΓ1 and W ρ2 = WΓ2

almost everywhere with respect to the Lebesgue measure. This
means that W ρ1 ∈ [WΓ1 ]≈ and W ρ2 ∈ [WΓ2 ]≈.
• Thanks to the cut-distance topology on the space of graphons ([12]),

define a distance between Feynman diagrams. For each Γ1,Γ2 ∈
HFG(Φ), define

(11)

dcut(Γ1,Γ2) := dcut([WΓ1 ]≈, [WΓ2 ]≈) = infρ,ψ supA,B(M

∣∣∣∣ ∫
A×B

(
W ρ

Γ1
(x, y)−Wψ

Γ2
(x, y)

)
dxdy

∣∣∣∣
such that the infimum is over all Lebesgue measure preserving trans-
formations ρ, ψ on M and the supremum is over all Lebesgue mea-
surable subsets A,B in the interval M .

• Set SΦ,M
graphon([a, b]) as the cut-distance topological space of (stretched)

Feynman graphons on the ground measure space M with values in
[a, b] ⊂ R corresponding to Feynman diagrams of the physical theory.

Remark 2.6. • SΦ,[0,1]
graphon([0, 1]) is a compact Hausdorff metrizable topo-

logical space while SΦ,[0,∞)
graphon([a, b]) is a complete Hausdorff metriz-

able topological space. We use the notations SΦ,[0,1]
graphon,≈([0, 1]) and

SΦ,[0,∞)
graphon,≈([a, b]) for the corresponding metric spaces of unlabeled

(stretched) Feynman graphon classes.
• Feynman diagrams Γ1,Γ2 are weakly isomorphic iff dcut(Γ1,Γ2) = 0.
• Up to the weakly isomorphic equivalence relation, a sequence {Γn}n≥1

of Feynman diagrams is called convergent, if the sequence { [WΓn ]≈
||[WΓn ]≈||cut

}n≥1

converges to a non-zero Feynman graphon with respect to the metric
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(11) such that for each n ≥ 1,

(12) ||[WΓn ]≈||cut := supA,B(M

∣∣∣∣ ∫
A×B

WΓn(x, y)dxdy

∣∣∣∣ .
• The renormalization Hopf algebra can be topologically completed

with respect to the metric (11). The resulting enriched space is
presented by Hcut

FG(Φ).
[28, 29, 31, 34]

Definition 2.7. The homomorphism density of a connected 1PI Feynman
diagram Γ ∈ HFG with some nested loops but without overlapping loops

with respect to any Feynman graphon WX in SΦ,[0,1]
graphon([0, 1]) is given by

(13)

t(Γ,WX) =

∫
[0,1]|tΓ|

∏
ekl∈E(tΓ)

WX(xk, xl)
∏

ekl /∈E(tΓ)

(
1−WX(xk, xl)

) |tΓ|∏
k=1

dxk ,

such that tΓ is a decorated non-planar rooted tree.

If Γ has overlapping sub-divergences, then its tree representation tΓ is a
linear combination of decorated non-planar rooted trees. Then we have
(14)

t(Γ,WX) =
n∏
i=1

∫
[0,1]|si|

∏
ekl∈E(si)

WX(xk, xl)
∏

ekl /∈E(si)

(
1−WX(xk, xl)

) |si|∏
k=1

dxk

such that tΓ = s1 + ...+ sn.

Corollary 2.8. Consider a sequence {WΓn}n≥1 and WX ,WY of Feynman

graphons in SΦ,[0,1]
graphon,≈([0, 1]). Let Γ ∈ HFG(Φ) be any connected 1PI Feyn-

man diagram with some nested loops but without overlapping loops.

• {WΓn}n≥1 is a Cauchy sequence with respect to the cut-distance met-
ric (11) iff the sequence {t(Γ,WΓn)}n≥1 of homomorphism densities
is convergent.
• {WΓn}n≥1 converges to WX with respect to the cut-distance topology

iff {t(Γ,WΓn)}n≥1 converges to t(Γ,WX).
• WX ,WY are weakly isomorphic iff t(Γ,WX) = t(Γ,WY ).

Proof. Thanks to Definitions 1.4, 2.5 and 2.7 and Remark 1.5, it is a direct
result of Counting Lemma for Graphs [6]. �

Theorem 2.9. Consider a gauge field theory Φ with the renormalization
Hopf algebra HFG(Φ). There exists the Fisher information metric on any
linear subspace of intermediate and general states in Φ generated by a finite
number of qft-states.

Proof. Thanks to Definition 2.3 and Remark 2.4, let SΦ,n be a finite di-
mensional vector space of states in Φ generated by n number of qft-states
corresponding to finite connected Feynman diagrams Γ1, ...,Γn. Let for each
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1 ≤ i ≤ n, Γi is built in terms of 1PI primitive components γi1 , ..., γik . Up
to the weakly isomorphism relation on the space of Feynman diagrams (i.e.
Remark 2.6), define a distribution

(15) h(x;WΓ1 , ...,WΓn) :=
n∑
i=1

t(Γ
dxe
i ,⊕ns=1WΓ

dxe
s

)WΓi

such that

• x ∈ J ⊂ [1,∞) is a random variable chosen from a compact interval
J ,
• x 7→ dxe is the ceiling function,

• For each 1 ≤ i ≤ n, Γ
dxe
i is a Feynman subdiagram of Γi generated

by γi1 , ..., γidxe for dxe ≤ k. For dxe > k, consider the empty graph
I as γidxe ,
• WΓi is the normalized stretched Feynman graphon of Γi and W

Γ
dxe
s

is the normalized stretched Feynman graphon of the Feynman sub-

diagram Γ
dxe
s of Γs.

The Gibbs measure of the distribution (15) is given by

(16) P(x;WΓ1 , ...,WΓn) =
1

Z[j]
exp

(
− jh(x;WΓ1 , ...,WΓn)

)
such that

(17) Z[j] =

∫
exp

(
iS(φ) + i

∫
j(x)φ(x)dDx

)
D[φ]

is the partition function with respect to the source field j in Φ. Up to
the weakly isomorphism relation on the space of Feynman diagrams (i.e.
Remark 2.6), set (WΓ1 ,WΓ2 , ...,WΓn) as the coordinate system on SΦ,n and
define the metric structure with respect to the probability distribution P on
SΦ,n given by
(18)

gst(WΓ1 , ...,WΓn) :=

∫
J

∂log P(x;WΓ1 , ...,WΓn)

∂WΓs

∂log P(x;WΓ1 , ...,WΓn)

∂WΓt

P(x;WΓ1 , ...,WΓn)dx

such that 1 ≤ s, t ≤ n. This is the Fisher information metric on the subspace
SΦ,n of states in Φ generated by qft-states Γ1, ...,Γn. � �

2.2. Correlations via combinatorial Dyson–Schwinger equations.
In this part, we introduce a dictionary between our platform and Reeh–
Schlieder theorem. The Hilbert space H of states and its open subspaces
are replaced with the topological renormalization Hopf algebra Hcut

FG(Φ) and
topological Hopf subalgebras Hcut

DSE corresponding to quantum motions. Lo-
cal operators in B(H), which provide approximations, are replaced with the
grafting operators, as Hochschild one-cocycle operators, and their composi-
tions.
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Theorem 2.10. Consider a combinatorial Dyson–Schwinger DSE given by
Definition 1.7 with the solution XDSE.

• For each m ≥ 1, a stretched Feynman graphon of the partial sum
Ym :=

∑m
j=0(λg)jXj is a bounded symmetric Lebesgue measurable

function W̃Ym ∈ S
Φ,[0,∞)
graphon([a, b]) defined on

⊔m
j=1 Ij×

⊔m
j=1 Ij such that

for l 6= k, Il∩Ik = ∅ and m(Ij) = (λg)j. Lebesgue measure preserving
transformations on [0,∞) are applied to project the partition {Ij}mj=1

to the partition {Ĩj}mj=1 ⊆ [0, 1) and define the normalized direct sum

(19) WYm =
W̃X1 + ...+ W̃Xm

||W̃X1 + ...+ W̃Xm ||cut

of stretched Feynman graphons of the components Xj. For each

1 ≤ j ≤ m, W̃Xj : Ĩj × Ĩj → R, as a stretched version of the canon-

ical Feynman graphon WXj , is of weight m(Ĩj). For each m ≥ 1,

[WYm ]≈ ∈ SΦ,[0,1)
graphon,≈([0, 1]).

• For each m, WYm determines a random graph R(Ym) in [0, 1] with
|tYm | number of vertices such that with the probability WYm(xi, xj),
there exists an edge between xi, xj in R(Ym). The sequence {R(Ym)}m≥1

of random graphs is cut-distance convergent to the normalized stretched

Feynman graphon WDSE ∈ SΦ,[0,1)
graphon([0, 1]) when m tends to infinity.

• The sequence {Ym}m≥1 of partial sums is cut-distance convergent to
XDSE.

[28, 29, 34]

Up to the weakly isomorphic relation, [WDSE]≈ is the unique unlabeled
Feynman graphon class associated with the large Feynman diagram XDSE.
Consider R(XDSE) as an infinite random graph in [0, 1] by selecting ran-
domly infinite countable nodes {xn}n≥1 from [0, 1] such that with the prob-
ability WDSE(xi, xj), there exists an edge between xi, xj . Non-perturbative
solutions of the equation DSE under strong running coupling constants can
be represented by R(XDSE). These infinite random graphs, homomorphism
densities of Feynman graphons and the topological enrichment of the renor-
malization Hopf algebra provided some new combinatorial and analytic tools
for the study of quantum motions where Hcut

FG(Φ) is rich enough to encode
solutions of quantum motions in a strongly coupled gauge field theory Φ.
[25, 27, 28, 29, 30, 31]

Consider a combinatorial Dyson–Schwinger equation DSE generated by
the family {γn}n≥1 of (1PI) primitive Feynman diagrams with the solution
XDSE and the sequence {Ym}m≥1 of its partial sums in a gauge filed theory
Φ.

Theorem 2.11. Following Definition 2.3, each general qft-state correspond-
ing to DSE can be approximated by grafting operators.
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Proof. Consider Hcut
DSE as the topological algebra for cut-distance regions of

Feynman diagrams which contribute to the sequence {Ym}m≥1 of partial
sums. For each (1PI) primitive Feynman diagram γil ∈ HDSE, the grafting
operator B+

γil
: Hcut

DSE → Hcut
DSE is a bounded continuous operator such that

its action on the empty graph I generates general qft-states of the form
B+
γil
B+
γil−1

...B+
γi1

(I). Each Feynman diagram Γ can be presented by Γ =

B+
γ,G(Γ′) for some primitive Feynman diagram γ where Γ′ is a forest of nested

sub-divergences of Γ such that after shrinking all of them to a point in Γ,
γ remains [17]. The symbol G encodes information about where to insert
these sub-divergences in γ to rebuild Γ. Therefore all general qft-states can
be presented as linear combinations of the multiple times applications of the
grafting operators. � �

Theorem 2.12. Each equation DSE determines non-zero correlations be-
tween separated space-like regions.

Proof. Relation 3 shows the non-commutativity of the grafting operators
with respect to each other. In other words, B+

γil
B+
γil−1

...B+
γi1

(I) 6= B+
γi1
B+
γi2
...B+

γil
(I).

For two different finite families {γi1 , ..., γil} and {γj1 , ..., γjk} of primitive
(1PI) Feynman diagrams from {γn}n≥1, consider operators

(20) B+
γil
B+
γi2
...B+

γi1
(I) , B+

γjk
B+
γj2
...B+

γj1
(I) .

Definition 2.5 and Remark 1.8 show that
(21)

dcut

(
B+
γil
B+
γi2
...B+

γi1
(I), B+

γjk
B+
γj2
...B+

γj1
(I)

)
6= 0 , dcut(Xi, Xj) 6= 0 , ∀i 6= j .

Thanks to Definition 2.3, the operators (20) are supported in two separated
space-like regions Ui1→il and Uj1→jk at different qft-states.

There exist some orders Nl, Nk such that

Ys ∩B+
γil
B+
γi2
...B+

γi1
(I) 6= ∅ , s ≥ Nl ,

(22) Yn ∩B+
γjk
B+
γj2
...B+

γj1
(I) 6= ∅ , n ≥ Nk .

In addition, thanks to Theorem 2.10, for each ε > 0, there exists an order
Nε such that for each t ≥ Nε,

(23) dcut(Yt, XDSE) < ε .

Set Nl,k,ε := Max{Nl, Nk, Nε}. For each m ≥ Nl,k,ε, the relations (22) and
(23) are valid. This means that the sequence {Ym}m≥Nl,k,ε of partial sums
of XDSE provide non-zero correlations between Ui1→il and Uj1→jk . � �

Corollary 2.13. There exist non-zero correlations between separated cut-
distance regions in Hcut

FG(Φ).
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Proof. Let U, V be separated regions in Hcut
FG(Φ). Let Prim(HFG(Φ)) be the

collection of primitive Feynman diagrams in Φ, and

(24) U ∩ Prim(HFG(Φ)) = {γsU }s , V ∩ Prim(HFG(Φ)) = {γtV }t .

Thanks to Definition 1.7, build combinatorial Dyson–Schwinger equations
DSEU defined in terms of the family {B+

γsU
}s and DSEV defined in terms of

the family {B+
γtV
}t. Consider XDSEU

and XDSEV
as the solutions of these

equations. Thanks to Definition 2.5 and Theorem 2.10, define a distance
function between these equations given by

(25) dcut(DSEU,DSEV) = limm→∞ dcut(Y
U
m , Y

V
m ) > 0 ,

such that Y U
m , Y

V
m are partial sums of XDSEU

and XDSEV
.

Now build a new combinatorial Dyson–Schwinger equation DSEUV gen-
erated by the collection {γsU }s ∪ {γtV }t of primitive Feynman diagrams
with the solution XDSEUV

. Thanks to the metric (25), for any cut-distance
neighborhood AUV of XDSEUV

, there exist orders NU , NV such that for any
m ≥ NUV := Max {NU , NV },

(26) {Y U
m }m≥NUV ∩AUV 6= ∅ , {Y V

m }m≥NUV ∩AUV 6= ∅ .

Therefore different graphs XDSEU
and XDSEV

which belong to separated
regions in Hcut

FG(Φ) at different qf-states are correlated via equations of type
DSEUV. � �

2.3. A statistical manifold associated with the space of 1PI Green’s

functions. Homomorphism densities of Feynman graphons in SΦ,[0,1]
graphon([0, 1])

are considered to obtain some geometric tools for the analytic study of quan-
tum motions and their solution spaces in a gauge field theory Φ [28, 29].
Thanks to a generalization of Stone–Weierstrass theorem, under the topol-
ogy of uniform convergence, the linear span of homomorphism densities is

dense in the space C
(
SΦ,[0,1]

graphon,≈([0, 1]), dcut

)
of continuous functionals on

SΦ,[0,1]
graphon,≈([0, 1]). In this part, thanks to Theorem 2.10, we apply homomor-

phism densities of Feynman graphons to determine the Fisher information
metric on the space of 1PI Green’s functions in Φ.

1PI Green’s functions Γei ,Γvj in Φ are characterized in terms of formal
expansions of Feynman diagrams with residues e1, ..., em as all possible types
of fermions and bosons, and v1, ..., vn as all possible types of interactions in
the physical theory. Under a combinatorial setting, we have
(27)

Γr(λ) = I±
∞∑
k=1

(λg)k
∑

Γ,res(Γ)=r,|Γ|=k,|Γ|aug=1

1

Sym(Γ)
B+

Γ (XΓ) , XΓ =
∏
e∈Γ

[1]
int

∏
v∈Γ[0]

Γv/Γe ,

such that r ∈ RΦ := {e1, ..., em, v1, ..., vn} [15, 38]. Fixed point equations of
these 1PI Green’s functions are combinatorial Dyson–Schwinger equations.
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Up to the weakly isomorphic relation on the space of Feynman diagrams
(given by Definition 2.5), the linear span of

(28)

{
DSEei(λg) , DSEvj (λg) , ei, vj ∈ RΦ , 0 < λ ≤ 1

}
encodes quantum motions in the physical theory under different running
coupling constants.

Definition 2.14. Consider combinatorial Dyson–Schwinger equations DSE1,DSE2

with the solutions XDSE1 , XDSE2 and corresponding sequences of partial

sums {Y (1)
m }m≥1 and {Y (2)

m }m≥1. For any m ≥ 1 and i, j ∈ {1, 2}, the homo-

morphism density of Y
(i)
m with respect to the normalized stretched Feynman

graphon WDSEj ∈ S
Φ,[0,1)
graphon([0, 1]) is given by

(29)

t(Y (i)
m ,WDSEj ) =

∫
[0,1)

|t
Y

(i)
m

|

∏
ekl∈E(t

Y
(i)
m

)

WDSEj (xk, xl)
∏

ekl 6∈E(t
Y

(i)
m

)

(
1−WDSEj (xk, xl)

) |t
Y

(i)
m
|∏

k=1

dxk ,

such that t
Y

(i)
m

is the forest representation of Y
(i)
m in terms of decorated

non-planar rooted trees.

Remark 2.15. • Thanks to Proposition 2 in [29], the homomorphism
density t(XDSEi ,WDSEj ) is defined in terms of the inverse limit

(30) t(XDSEi ,WDSEj ) = lim←mt(Y
(i)
m ,WDSEj )

of the homomorphism densities of the partial sums Y
(i)
m .

• Equations DSE1 and DSE2 are weakly isomorphic (i.e. dcut(XDSE1 , XDSE2) =
0) iff for any connected 1PI Feynman diagram Γ ∈ HFG(Φ) with
some nested loops but without overlapping loops,

(31) t(Γ,WDSE1) = t(Γ,WDSE2) .

Theorem 2.16. Homomorphism densities of Feynman graphons associate
a statistical manifold to the gauge field theory Φ.

Proof. It is possible to replace combinatorial Dyson–Schwinger equations
with their corresponding 1PI Green’s functions. For any r ∈ RΦ and Feyn-
man diagram Γ, the homomorphism density of Γ with respect to WΓr(λ) ∈
SΦ,[0,1)

graphon([0, 1]) is given by

(32)

t(Γ,WΓr(λ)) =

∫
[0,1)|tΓ|

∏
ekl∈E(tΓ)

WΓr(λ)(xk, xl)
∏

ekl 6∈E(tΓ)

(
1−WΓr(λ)(xk, xl)

) |tΓ|∏
k=1

dxk ,

such that tΓ is the rooted tree representation of Γ. t(Γ,WΓr(λ)) determines
the probability of constructing a random graph R(Γ) associated with Γ via
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WΓr(λ). In other words, t(−,WΓr(λ)) can be applied to define a probability
distribution on the space of Feynman diagrams in Φ.

Consider 1PI Green’s functions in Φ (given by Formula (27)) under the
bare coupling constant g to define a statistical manifold with coordinates

(33) [WΓr ] := (WΓe1 (1), ...,WΓem (1),WΓv1 (1), ...,WΓvn (1)) , r ∈ RΦ

up to the weakly isomorphic relation on the space of Feynman diagrams
and combinatorial Dyson–Schwinger equations (i.e. Remarks 2.6 and 2.15).
Thanks to the homomorphism density (32), define a distribution p((λ, x), [WΓr ])
in terms of two random variables on the coordinates [WΓr ]. The one random
variable is applied to regularize the bare coupling constant and the other
random variable extracts finite partial sums of 1PI Green’s functions. This
function is given by

(34) p((λ, x), [WΓr ]) :=
∑
r∈RΦ

t(Γr,dxe(λ),⊕s∈RΦ
WΓs,dxe(λ))WΓr(1) .

• (λ, x) ∈ I × J ⊂ [0,∞)× [1,∞) is a random pair such that I, J are
compact intervals.
• x 7→ dxe is the ceiling function.

• For each r ∈ RΦ and dxe with x ∈ J , Γr,dxe(λ) is a partial expansion
of 1PI Green’s function Γr(λ) which contains Feynman diagrams
with the loop numbers at most dxe. It is given by

(35) Γr,dxe(λ) = I±
dxe∑
k=1

(λg)k
∑

Γ,res(Γ)=r,|Γ|=k,|Γ|aug=1

1

Sym(Γ)
B+

Γ (XΓ) .

• ⊕s∈RΦ
WΓs,dxe(λ) is a normalized stretched Feynman graphon in SΦ,[0,1)

graphon([0, 1])

which is a finite direct sum of normalized stretched Feynman graphons
WΓs,dxe(λ) associated with partial expansions Γs,dxe(λ).

The Gibbs measure of the distribution (34) is given by

(36) P((λ, x), [WΓr ]) =
1

Z[j]
exp

(
− jp((λ, x), [WΓr ])

)
such that Z[j] is the partition function with respect to the source field j in
Φ. Up to the weakly isomorphic relation on the space of Feynman diagrams
and combinatorial Dyson–Schwinger equations (i.e. Remarks 2.6 and 2.15),
the metric structure with respect to the probability distribution P is given
by
(37)

gst([WΓr ]) :=

∫
I×J

∂log P((λ, x), [WΓr ])

∂WΓs(1)

∂log P((λ, x), [WΓr ])

∂WΓt(1)
P((λ, x), [WΓr ]) dλdx .

� �

Remark 2.17. • The metric (37) is the Fisher information metric on
the space of 1PI Green’s functions of Φ.



FROM DYSON–SCHWINGER EQUATIONS TO QUANTUM ENTANGLEMENT 21

• Thanks to Proposition 2 in [29], the homomorphism density t(Γr(λ),⊕s∈RΦ
WΓs(λ)),

for each r ∈ RΦ, is defined in terms of the inverse limit

(38) t(Γr(λ),⊕s∈RΦ
WΓs(λ)) = lim←mt(Γ

r,m(λ),⊕s∈RΦ
WΓs(λ))

of the homomorphism densities of the partial expansions Γr,m(λ).

3. A lattice model for quantum entanglement

According to Definition 2.3, a finite connected Feynman diagram Γ can be
interpreted as a general qft-state built by a composition of a finite number
of basic qft-states associated with 1PI primitive components of Γ. These
basic qft-states are entangled because of their roles in the structure of Γ. In
addition, B+

γ (Γ) generates new Feynman diagrams which are entangled to Γ.
Therefore, thanks to the combinatorial reformulation of quantum motions
(i.e. Definition 1.7), each combinatorial Dyson–Schwinger equation DSE
determines an infinite number of entangled general qft-states via primitive
Feynman diagrams γ ∈ {γn}n≥1. They are qft-states occupied by XDSE or
its partial sums.

Theorem 3.1. Quantum entanglement between a particle p at a basic qft-
state γp and virtual particles at intermediate qft-states originated from γp

in an interacting gauge field theory Φ can be encoded by a lattice of Hopf
sub-subalgebras derived from solutions of quantum motions at qft-states orig-
inated from γp.

Proof. Thanks to Definition 2.3, Theorems 2.11, 2.12 and Corollary 2.13,
consider a combinatorial Dyson–Schwinger equation DSEp defined by a fam-
ily {γn}n≥1 of 1PI primitive Feynman diagrams such that γp ∈ {γn}n≥1 in
terms of Definition 1.7. The grafting operator B+

γp generates some general
qft-states occupied by some virtual particles which interact with p.

We build a tower of combinatorial Dyson–Schwinger equations originated
from the initial equation DSEp. For each j ≥ 1, define a new collection

{Γ(j)
n }n≥1 of graphs given by

(39) Γ(j)
n := Γ

(j−1)
1 + ...+ Γ(j−1)

n

such that Γ
(0)
n = γn for each n ≥ 1. Thanks to the Lie algebra of primitive

graphs with respect to the renormalization coproduct, the linear combina-
tion of a finite number of primitive graphs is primitive.

• For each j ≥ 1 and n ≥ 1, B+

Γ
(j)
n

is Hochschild one-cocycle.

• The operator B+

Γ
(j)
n

inserts each Γ into Γ
(j−1)
1 +...+Γ

(j−1)
n with respect

to types of external edges in Γ and types of vertices in Γ
(j−1)
1 + ...+

Γ
(j−1)
n .

• For each j, B+

Γ
(j)
n

(Γ) contains B+

Γ
(j−1)
n

(Γ) as a subgraph.
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For each j ≥ 1, define a new combinatorial Dyson–Schwinger equation

DSE
(j)
p :=< {B+

Γ
(j)
n

}n≥1 > with the corresponding Hopf subalgebra H
DSE

(j)
p

.

• For each j ≥ 1, there exists an injective Hopf algebra homomorphism
from H

DSE
(j)
p

to H
DSE

(j+1)
p

.

• There exists the following increasing chain of Hopf subalgebras

(40) HDSEp ≤ HDSE
(1)
p
≤ H

DSE
(2)
p
≤ ... ≤ H

DSE
(j)
p
≤ ... .

• For each n ≥ 1, define H(Xj
1 , ..., X

j
n) as the commutative graded

Hopf sub-subalgebra of H
DSE

(j)
p

free generated algebraically by n

elements Xj
1 , ..., X

j
n of the components of the solution of the equation

DSE
(j)
p .

Consider Cp as the collection of all Hopf subalgebras H
DSE

(j)
p

and their

Hopf sub-subalgebras H(Xj
1 , ..., X

j
n) generated by the above tower of combi-

natorial Dyson–Schwinger equations. Define a binary relation 4 on Cp given
by

(41) H1 4 H2 ⇔ ∃ Hi1 , ...,Hir ∈ Cp
such that there exist injective Hopf algebra homomorphisms

(42) H1 → Hi1 → Hi2 → ...→ Hir → H2

which connect H1 to H2. The relation 4 is reflexive, antisymmetric and
transitive. So (Cp,4), as a totally ordered set, is a lattice presented by
(43)

HDSEp H
DSE

(1)
p

H
DSE

(2)
p

... H
DSE

(j)
p

H
DSE

(j+1)
p

...

... ... ... ... ... ... ...

H(X1, ..., Xn) H(X1
1 , ..., X

1
n) H(X2

1 , ..., X
2
n) ... H(Xj

1 , ..., X
j
n) H(Xj+1

1 , ..., Xj+1
n ) ...

... ... ... ... ... ... ...

H(X1, X2) H(X1
1 , X

1
2 ) H(X2

1 , X
2
2 ) ... H(Xj

1 , X
j
2) H(Xj+1

1 , Xj+1
2 ) ...

H(X1) H(X1
1 ) H(X2

1 ) ... H(Xj
1) H(Xj+1

1 ) ...

, such that H(X1) is the greatest lower bound of this lattice. For any pair
{H1, H2} in (Cp,4), if H1 4 H2 then define H1 ∧H2 := H1 and H1 ∨H2 :=
H2.

The lattice (43) encodes a collection of intermediate qft-states generated

by the equations DSE
(j)
p with respect to the initial basic qft-state γp. These

intermediate qft-states are occupied by virtual particles in Feynman dia-

grams which contribute to solutions of DSE
(j)
p and their partial sums. The
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grafting operators in the structures of these solutions show that these inter-
mediate qft-states are entangled. Therefore, thanks to Theorems 2.11 and

2.12, the tower {DSE
(j)
p }j≥1 together with its corresponding lattice (Cp,4)

presents an information transition package between an infinite number of
virtual particles at intermediate qft-states which are entangled with the
particle p at the initial basic qft-state γp. � �

Remark 3.2. Following notations of Theorem 3.1 and its Proof, suppose
DSE′p is another combinatorial Dyson–Schwinger equation defined by a fam-
ily {γ′n}n≥1 of 1PI primitive Feynman diagrams such that γp ∈ {γ′n}n≥1.

Consider {DSE
′,(j)
p }j≥1 and (C′p,4) as the tower and lattice built by the

initial equation DSE′p via the procedure given in Proof of Theorem 3.1.

• If equations DSEp and DSE′p are weakly isomorphic, i.e. dcut(XDSEp , XDSE′p
) =

0, then the lattices (Cp,4) and (C′p,4) are isomorphic.

• If dcut(XDSEp , XDSE′p
) 6= 0, then {DSE

(j)
p }j≥1 and {DSE

′,(j)
p }j≥1 de-

termine different information transition packages.

Corollary 3.3. Following notations of Theorem 3.1, set Rp as the collection
of Feynman diagrams in Φ which contribute to solutions of all combinato-
rial Dyson–Schwinger equations of the type DSEp with the corresponding

tower {DSE
(j)
p }j≥1. Its completion with respect to the cut-distance topology

is presented by Rp.

• Thanks to Definition 2.3, Theorems 2.11 and 2.12 and Corollary
2.13, the lattice (Cp,4) encodes quantum entanglement between all

(virtual) particles which contribute to the region Rp at states gener-
ated by the basic qft-state γp.
• Thanks to Theorem 2.12 and Corollary 2.13, the cut-distance topo-

logical region Rp determines a space-time region which contains the
particle p and all virtual particles which interact with p at interme-
diate qft-states.

Theorem 3.4. Quantum entanglement between space-time separated par-
ticles p at a basic qft-state γp and q at a basic qft-state γq in a (strongly
coupled) interacting gauge field theory Φ can be encoded by a lattice of Hopf
sub-subalgebras derived from solutions of quantum motions at qft-states orig-
inated from γp, γq and the vacuum state.

Proof. Thanks to Definition 2.3, Theorems 2.11, 2.12 and 3.1 and Corollaries
2.13, 3.3, consider combinatorial Dyson–Schwinger equations DSEp defined
by a family {γn}n≥1 of 1PI Feynman diagrams such that γp ∈ {γn}n≥1

and DSEq defined by a family {γ′n}n≥1 of 1PI Feynman diagrams such that
γq ∈ {γ′n}n≥1. The grafting operators B+

γp and B+
γq generate some general

qft-states occupied by some virtual particles which interact with p and q.
We determine topological regions such as Rcpq in Hcut

FG(Φ) such that

(44) Rp ∩Rcpq 6= ∅ , Rq ∩Rcpq 6= ∅ .
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Thanks to the metric (11), define a distance between topological regions Rp

and Rq in Hcut
FG(Φ) given by

(45) d(Rp, Rq) := inf{dcut(X,Y ) : X ∈ Rp, Y ∈ Rq} .

Thanks to Theorem 2.12 and Corollary 2.13, for d(Rp, Rq) > 0, there exist
some j1, j2 with the corresponding combinatorial Dyson–Schwinger equa-

tions DSE
(j1)
p and DSE

(j2)
q such that up to the weakly isomorphic relation

and cut-distance topology,

(46) X
DSE

(j1)
p

= limn→∞

n∑
k=0

X
(j1)
k , X

DSE
(j2)
q

= limn→∞

n∑
k=0

X
(j2)
k ,

(47) d(Rp, Rq) = dcut(XDSE
(j1)
p
, X

DSE
(j2)
q

) > 0 .

For each ε > 0, consider Hochschild one-cocycles of the type B+
γεn,p

, n ≥ 1
with the following properties.

• Each γεn is a finite primitive (1PI) Feynman diagram such that

(48) ∀n ≥ 1, γεn /∈ Rp, γεn /∈ Rq, γεn ∈ HFG(Φ) .

• DSEεp is a combinatorial Dyson–Schwinger equation defined by the

family {B+
γεn,p
}n≥1 and with the unique solution Xp

ε =
∑

n≥0X
(ε)p
n

for λg = 1. There exists Nε ∈ N such that for each n ≥ Nε, we have

dcut(X
(j1)
n , X

(ε)p
n ) < ε. The triangle inequality of the cut distance

metric leads us to

(49) dcut(XDSE
(j1)
p
, Xp

ε ) < ε .

For each ε > 0, consider Hochschild one-cocycles of the type B+
ηεn,q

, n ≥ 1
with the following properties.

• Each ηεn is a finite primitive (1PI) Feynman diagram such that

(50) ∀n ≥ 1, ηεn /∈ Rp, ηεn /∈ Rq, ηεn ∈ HFG(Φ) .

• DSEεq is a combinatorial Dyson–Schwinger equation defined by the

family {B+
ηεn,q
}n≥1 and with the unique solution Xq

ε =
∑

n≥0X
(ε)q
n

for λg = 1. There exists N ′ε ∈ N such that for each n ≥ N ′ε, we have

dcut(X
(j2)
n , X

(ε)q
n ) < ε. The triangle inequality of the cut distance

metric leads us to

(51) dcut(XDSE
(j2)
q
, Xq

ε ) < ε .

Following Proof of Theorem 3.1, consider the lattices (Cp,4) and (Cq,4) of

Hopf sub-subalgebras H
DSE

(j)
p

and H
DSE

(l)
q

associated with towers {DSE
(j)
p }j

and {DSE
(l)
q }l of combinatorial Dyson–Schwinger equations generated by

the initial equations DSEp and DSEq, respectively. Following Corollary

3.3, we have cut-distance topological regions Rp and Rq. They contain
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Feynman diagrams which contribute to solutions of the equations in the

towers {DSE
(j)
p }j and {DSE

(l)
q }l. There exist some j, l such that equations

DSE
(j)
p and DSE

(l)
q contribute to the relation (47). Set

(52)
j∗ := Min{j : dcut(XDSE

(j)
p
, Y ) > 0 ,∀Y ∈ Rq} , l∗ := Min{l : dcut(X,XDSE

(l)
q

) > 0 , ∀X ∈ Rp}

to define the following (sub-)lattices.

• The sub-lattice (Cj
∗
p ,4) is generated by the first j∗ columns of the

original lattice (Cp,4).

• The sub-lattice (Cl∗q ,4) is generated by the first l∗ columns of the
original lattice (Cq,4).

• The lattice (Cj
∗l∗
cpq ,4) is generated by (i) Hopf (sub-)subalgebras in

(Cj
∗
p ,4) and (Cl∗q ,4), (ii) Hopf (sub-)subalgebras corresponding to

equations of types DSEεp, DSEεq and (iii) Hopf (sub-)subalgebras cor-

responding to equations of type DSE
(k)
c with respect to a virtual

particle c in the vacuum at the intermediate qft-states γc as a linear
combination of the basic qft-states γp, γq. Chains

(53) HDSEp � HDSE
(1)
p
� ... � H

DSE
(j∗)
p

,

(54) HDSEq � HDSE
(1)
q
� ... � H

DSE
(l∗)
q

in (Cj
∗
p ,4) and (Cl∗q ,4) are coupled in (Cj

∗l∗
cpq ,4) by one of the fol-

lowing sequences of Hopf algebra homomorphisms

(55) H
DSE

(j∗)
p
−→ HDSEεp −→ H

DSE
(k)
c
−→ HDSEεq −→ H

DSE
(l∗)
q

or

(56) H
DSE

(l∗)
q
−→ HDSEεq −→ H

DSE
(k)
c
−→ HDSEεp −→ H

DSE
(j∗)
p

.

� �

Remark 3.5. Following notations of Theorem 3.4 and its Proof, suppose
DSE′p and DSE′q are another combinatorial Dyson–Schwinger equations such
that they have γp and γq in their structures, respectively, and they generate

the lattice (C
′,j∗l∗
cpq ,4).

• If DSEp and DSE′p are weakly isomorphic, DSEq and DSE′q are

weakly isomorphic, then the lattices (Cj
∗l∗
cpq ,4) and (C

′,j∗l∗
cpq ,4) are

isomorphic.
• If dcut(XDSEp , XDSE′p

) 6= 0 or dcut(XDSEq , XDSE′q
) 6= 0, then lattices

(Cj
∗l∗
cpq ,4) and (C

′,j∗l∗
cpq ,4) determine different information transition

packages.

Corollary 3.6. Following notations in Theorems 3.1, 3.4 and Corollary
3.3, set Rcpq as the collection of Feynman diagrams in Φ which contribute
to solutions of combinatorial Dyson–Schwinger equations of the types DSEεp
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and DSEεq together with their related towers {DSE
ε,(j)
p }j and {DSE

ε,(l)
q }l. Its

completion with respect to the cut-distance topology is presented by Rcpq .

• Rcpq involves Feynman diagrams which contribute to solutions of

combinatorial Dyson–Schwinger equations of the type DSE
(k)
c cor-

responding to virtual particles c in the vacuum at intermediate qft-
states originated from the basic qft-states γp and γq.
• Thanks to Definition 2.3, Theorems 2.11 and 2.12 and Corollary

2.13, the lattice (Cj
∗l∗
cpq ,4) encodes quantum entanglement between

all (virtual) particles which contribute to the region Rcpq at states
generated by the basic qft-states γp, γq and γc.
• Thanks to Theorems 2.11, 2.12 and Corollary 2.13, the cut-distance

topological region Rp ∪Rq ∪Rcpq determines separated but correlated
space-time regions Up, which has p at the qft-state γp and Uq, which
has q at the qft-state γq.

4. Intermediate algorithms associated with quantum
entanglement

On the one hand, intermediate structures between programs and com-
putable functions are studied in terms of Galois theory [41, 42] where inter-
mediate algorithmic structures are concerned on the basis of automorphisms
of programs. Galois theory is useful to explain the way that a subobject sits
inside an object. The fundamental theorem of Galois theory of algorithms
allows us to formulate a bijective correspondence between subgroups of the
group of all automorphisms and intermediate algorithmic structures. On the
other hand, combinatorial Dyson–Schwinger equations are important source
of graded Hopf subalgebrs in gauge field theories. In the dual setting, it is
possible to generate Lie subgroups from these Hopf subalgebras. The Hopf
subalgebra HDSE of an equation DSE is a Hopf ideal in the renormalization
Hopf algebra. The dual of the quotient Hopf algebra HFG(Φ)/HDSE deter-
mines a Lie subgroup of the Lie group GFG(C) of diffeographisms of the
physical theory. Thanks to the Manin approach to Halting problem via the
BPHZ perturbative renormalization [20, 21], a theory of computation for
non-perturbative parameters is introduced and developed. [25, 26, 27, 32]

In this section, we are going to lift lattices of Hopf sub-subalgebras given
by Theorems 3.1 and 3.4 onto Lie groups. This new setting is useful to
study quantum entanglement in gauge field theories in terms of flowcharts
and intermediate algorithms in theory of computation.

Corollary 4.1. There exists a lattice of Lie subgroups which encodes the
quantum entanglement between a particle p at a basic qft-state γp and virtual
particles at intermediate qft-states originated from γp in an interacting gauge
field theory Φ.

Proof. Following notations in Proof of Theorem 3.1, consider the lattice
(Cp,�) corresponding to the combinatorial Dyson–Schwinger equation DSEp.
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For each arbitrary pair of objects H
DSE

(k)
p
� H

DSE
(l)
p

, there exists the nat-

ural injective Hopf algebra homomorphism ikl : H
DSE

(k)
p
−→ H

DSE
(l)
p

. It

determines the surjective morphism ĩkl : Spec(H
DSE

(l)
p

) −→ Spec(H
DSE

(k)
p

)

of affine group schemes with respect to the contravariant functor Spec.
For eachH

DSE
(k)
p

, the affine group scheme Spec(H
DSE

(k)
p

) is a representable

covariant functor from the category of commutative algebras to the category
of groups. Set

(57) G
DSE

(k)
p

= Spec(H
DSE

(k)
p

)(C) = Hom(H
DSE

(k)
p
,C)

as the complex Lie group of characters corresponding to H
DSE

(k)
p

.

Follow the lattice (43) to define a new lattice (Gp,�) of Lie subgroups in
terms of the binary relation

(58) Gs � Gt ⇔ ∃ G1, ..., Gr ∈ Gp

such that there exist surjective group homomorphisms

(59) Gs → G1 → G2 → ...→ Gr → Gt

which connect Gs to Gt. For each n ≥ 1, consider G(Xj
1 , ..., X

j
n) as the Lie

subgroup corresponding to the free commutative graded Hopf sub-subalgebra

H(Xj
1 , ..., X

j
n) of H

DSE
(j)
p

. The lattice (Gp,�) is presented by

(60)

... G(Xj+1
1 ) G(Xj

1) ... G(X2
1 ) G(X1

1 ) G(X1)

... G(Xj+1
1 , Xj+1

2 ) G(Xj
1 , X

j
2) ... G(X2

1 , X
2
2 ) G(X1

1 , X
1
2 ) G(X1, X2)

... ... ... ... ... ... ...

... G(Xj+1
1 , ..., Xj+1

n ) G(Xj
1 , ..., X

j
n) ... G(X2

1 , ..., X
2
n) G(X1

1 , ..., X
1
n) G(X1, ..., Xn)

... ... ... ... ... ... ...

... G
DSE

(j+1)
p

G
DSE

(j)
p

... G
DSE

(2)
p

G
DSE

(1)
p

GDSEp

� �

Corollary 4.2. There exists a lattice of Lie subgroups which encodes the
quantum entanglement between space-time separated particles p at a basic
qft-state γp and q at a basic qft-state γq in a (strongly coupled) interacting
gauge field theory Φ.

Proof. It is a direct result of Theorem 3.4 and Corollary 4.1. Following

notations in Proof of Theorem 3.4, consider the lattice (Cj
∗l∗
cpq ,�). Lift the

increasing chains (53), (54) onto groups to obtain the following decreasing
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chains of Lie groups.

(61) G
DSE

(j∗)
p
≥ G

DSE
(j∗−1)
p

≥ ... ≥ G
DSE

(1)
p
≥ GDSEp ,

(62) G
DSE

(l∗)
q
≥ G

DSE
(l∗−1)
q

≥ ... ≥ G
DSE

(1)
q
≥ GDSEq .

These chains can be coupled to each other by using one of the following
group homomorphisms

(63) G
DSE

(l∗)
q
−→ GDSEεq −→ G

DSE
(k)
c
−→ GDSEεp −→ G

DSE
(j∗)
p

or

(64) G
DSE

(j∗)
p
−→ GDSEεp −→ G

DSE
(k)
c
−→ GDSEεq −→ G

DSE
(l∗)
q

.

G
DSE

(k)
c

is the complex Lie group corresponding to H
DSE

(k)
c

of the equation

DSE
(k)
c with respect to a virtual particle c in the vacuum at an intermediate

qft-state as a linear combination of basic qft-states γp, γq. Now build a new

lattice (Gj
∗l∗
cpq ,�) of Lie subgroups generated by objects of the lattices (Gj

∗
p ,�

), (Gl∗q ,�) together with Lie subgroups corresponding to Hopf subalgebras
of types HDSEεp , HDSEεq and H

DSE
(k)
c

. � �

5. A renormalization group setting for quantum entanglement

The Connes–Kreimer Hopf algebraic renormalization has been lifted onto
a universal categorical setting by Connes and Marcolli where they have en-
coded perturbative renormalization of gauge field theories in the language
of differential Galois theory. They built a universal category of flat equi-
singular vector bundles which can encode counterterms and Renormaliza-
tion Groups of physical theories [9]. This categorical setting has been also
developed for the study of quantum motions to formulate non-perturbative
counterterms in terms of systems of differential equations together with sin-
gularities [32].

In this section, we show that the Connes–Marcolli category is rich enough
to encode quantum entanglement in interacting gauge field theories.

Lemma 5.1. There exists a lattice of neutral Tannakian subcategories which
encodes the quantum entanglement between a particle p at a basic qft-state
γp and virtual particles at intermediate qft-states originated from γp in an
interacting gauge field theory Φ.

Proof. Following notations in Proofs of Theorem 3.1 and Corollary 4.1,
consider the lattices (Cp,�) and (Gp,�) corresponding to the combinato-
rial Dyson–Schwinger equation DSEp. For each arbitrary pair of objects
H

DSE
(k)
p
� H

DSE
(l)
p

, there exists the natural injective Hopf algebra homo-

morphism ikl : H
DSE

(k)
p
−→ H

DSE
(l)
p

. It can be lifted onto the surjective

group homomorphism īkl : G
DSE

(l)
p
−→ G

DSE
(k)
p

.
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For each G
DSE

(l)
p
∈ (Gp,�), set G∗

DSE
(l)
p

:= G
DSE

(l)
p

o Gm such that Gm

is the multiplicative group which acts on the original group. Consider the
category RepG∗

DSE
(l)
p

of finite dimensional representations of the complex Lie

group G∗
DSE

(l)
p

which is a neutral Tannakian category. The surjective mor-

phism īkl transforms the representation σ : G
DSE

(k)
p
−→ GLV to the rep-

resentation σ ◦ īkl : G
DSE

(l)
p
−→ GLV . Therefore we obtain an exact fully

faithful functor

(65) RepG∗
DSE

(k)
p

−→ RepG∗
DSE

(l)
p

.

Now thanks to the lattice (60), we build a new lattice (Catp,�) of neutral
Tannakian subcategories in terms of the binary relation

(66) RepH∗ � RepK∗ ⇔ ∃ RepH∗1 , ...,RepH∗t ∈ Catp

such that there exist exact fully faithful functors

(67) RepK∗ → RepH∗1 → ...→ RepH∗t → RepH∗

, determined by epimorphisms īkl, which connects RepK∗ to RepH∗ . � �

Lemma 5.2. There exists a lattice of neutral Tannakian subcategories which
encodes the quantum entanglement between space-time separated particles p
at a basic qft-state γp and q at a basic qft-state γq in a (strongly coupled)
interacting gauge field theory Φ.

Proof. Following notations in Proofs of Theorem 3.4, Corollary 4.2 and

Lemma 5.1, consider lattices (Cj
∗l∗
cpq ,�) and (Gj

∗l∗
cpq ,�). Lift decreasing chains

(61) and (62) onto the following chains of categories and exact fully faithful
functors.

(68) RepG∗DSEp
≤ RepG∗

DSE
(1)
p

≤ ... ≤ RepG∗
DSE

(j∗−1)
p

≤ RepG∗
DSE

(j∗)
p

,

(69) RepG∗DSEq
≤ RepG∗

DSE
(1)
q

≤ ... ≤ RepG∗
DSE

(l∗−1)
q

≤ RepG∗
DSE

(l∗)
q

.

These two chains can be coupled to each other by using one the following
sequences of exact fully faithful functors.
(70)

RepG∗
DSE

(l∗)
q

−→ RepG∗
DSEεq

−→ RepG∗
DSE

(k)
c

−→ RepG∗
DSEεp

−→ RepG∗
DSE

(j∗)
p

or
(71)
RepG∗

DSE
(j∗)
p

−→ RepG∗
DSEεp

−→ RepG∗
DSE

(k)
c

−→ RepG∗
DSEεq

−→ RepG∗
DSE

(l∗)
q

.

This information is enough to build a new lattice (Catj
∗l∗
cpq ,�) of neutral

Tannakian subcategories which contains (Catp,�) and (Catq,�) as sub-
lattices. � �
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Theorem 5.3. The Connes–Marcolli category encodes quantum entangle-
ment in (strongly coupled) gauge field theories.

Proof. The universal Connes–Marcolli category is a neutral Tannakian cat-
egory which is isomorphic to the category RepU∗ of all finite dimensional
representations of the universal affine group scheme U∗. The covariant func-
tor U∗ is representable by the universal Hopf algebra of renormalization HU.
This particular Hopf algebra is isomorphic to the linear space of noncommu-
tative polynomials in variables fn, n ∈ N equipped with the shuffle product.
[9]

For a gauge field theory Φ with the renormalization Hopf algebra HFG(Φ),
consider the affine group scheme GΦ which is representable by HFG(Φ). The
category RepG∗Φ

can be embedded in RepU∗ as a subcategory [9]. In addition,

for any combinatorial Dyson–Schwinger equation DSE in Φ with the corre-
sponding Hopf subalgebra HDSE, consider the affine group scheme GDSE

which is representable by HDSE. The category RepG∗DSE
can be embedded in

RepU∗ as a subcategory [32]. Therefore the category RepU∗ encodes physi-
cal information of perturbation and non-perturbation parts of the physical
theory Φ.

Thanks to Lemmas 5.1 and 5.2, the chains (70) and (71) of subcategories
encapsulate quantum entanglement via one of the relations πl∗ = rpqj∗l∗ ◦ πj∗
or πj∗ = rqpl∗j∗ ◦ πl∗ such that

πj∗ : RepU∗ → RepG∗
DSE

(j∗)
p

, πl∗ : RepU∗ → RepG∗
DSE

(l∗)
q

,

(72) rpqj∗l∗ : RepG∗
DSE

(j∗)
p

→ RepG∗
DSE

(l∗)
q

, rqpl∗j∗ : RepG∗
DSE

(l∗)
q

→ RepG∗
DSE

(j∗)
p

.

RepG∗
DSE

(j∗)
p

and RepG∗
DSE

(l∗)
q

can be embedded in RepU∗ as subcategories.

� �

Corollary 5.4. There exists a collection of mixed Tate motives which en-
codes quantum entanglement in a gauge field theory.

Proof. RepU∗ is equivalent to the category TMmix(Spec O[1/N ]) of mixed
Tate motives (i.e. Proposition 1.110, Corollary 1.111 in [9]). Therefore,
thanks to Theorem 5.3, RepG∗

DSE
(j∗)
p

and RepG∗
DSE

(l∗)
q

determine subcategories

of the category TMmix(Spec O[1/N ]). These subcategories contain mixed
Tate motives associated with the complex Lie groups G

DSE
(j∗)
p

and G
DSE

(l∗)
q

corresponding to the equations DSE
(j∗)
p and DSE

(l∗)
q . � �

Thanks to Theorem 5.3, quantum entanglement in a gauge field theory
can be studied under a renormalization group. This renormalization group
is useful to show the invariance of our lattice model under changing the
scales of the energy.
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Corollary 5.5. Quantum entanglement between space-time separated parti-
cles at different (intermediate or general) qft-states is invariant under chang-
ing the energy scale in a gauge field theory.

Proof. Following notations in Proof of Theorem 5.3, the universal Hopf al-
gebra of renormalization HU is the graded dual of the universal enveloping
algebra of the free graded Lie algebra LU which is generated by elements e−n
of degree −n for each n > 0. The corresponding pro-unipotent affine group
scheme U is determined by Milnor–Moore Theorem. The sum e :=

∑
n e−n

is an element of LU which can be lifted onto the morphism rg : Ga → U. [9]
Following notations in Proofs of Theorems 3.1, 3.4 and Corollaries 4.1,

4.2, consider a basic combinatorial Dyson–Schwinger equation DSEp with
the corresponding complex Lie group GDSEp . Apply Theorem 1.106 in [9]
to determine a graded representation τ : U∗(C) → G∗DSEp

. We apply the

map τ ◦ rg to build a renormalization group {FDSEp
t }t∈R with respect to the

equation DSEp. It encodes the behavior of DSEp under changing the energy
scale during the renormalization of its solution. This framework associates

a renormalization group {FDSE
(j)
p

t }t∈R to each equation DSE
(j)
p , j ≥ 1 in the

tower {DSE
(j)
p }j≥1 built by the relation (39). Follow the same process to

build a tower of coupled renormalization groups with respect to the lattice

(Gj
∗l∗
cpq ,�) given by Corollaries 4.1 and 4.2. Define a new lattice (RGcpq ,�

) of renormalization groups corresponding to those combinatorial Dyson–
Schwinger equations which contribute to the region Rp ∪Rq ∪Rcpq . � �

6. Conclusion

In this research we applied the cut-distance topologically enriched renor-
malization Hopf algebra Hcut

FG(Φ) and Feynman graphon representations of
solutions of quantum motions to formulate a new lattice setting for the
description of quantum entanglement in a gauge field theory Φ as a funda-
mental property of cut-distance topological regions of Feynman diagrams,
as space-time graphs, around particles. (See Corollaries 2.13, 3.3 and 3.6).
Hopf subalgebras of combinatorial Dyson–Schwinger equations, as particular
subspaces of the renormalization Hopf algebra, are associated to space-time
regions. See Theorems 2.11, 2.12, 3.1 and 3.4 and Corollary 2.13.

• Quantum entanglement is a fundamental concept in theory of quan-
tum information where random processes are studied and developed
[13, 18, 19]. Feynman graphon models led us to formulate random
graph processes and homomorphism densities for the study of solu-
tions of quantum motions [26, 28, 29]. Here we formulated the Fisher
information metric on the finite dimensional subspaces of states in a
gauge field theory in terms of homomorphism densities of Feynman
graphons (i.e. Theorem 2.9). Then we developed our setting to as-
sociate a statistical manifold to the space of 1PI Green’s functions
of Φ. The Fisher information metrics (18) and (37) and lattices of
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Hopf subalgebras, Lie subgroups and Tannakian subcategories are
new tools to analyze quantum entanglement in terms of correlations
between cut-distance topological regions of Feynman diagrams which
contribute to solutions of towers of combinatorial Dyson–Schwinger
equations. See Theorems 2.16, 3.1, 3.4 and 5.3 and Corollaries 4.1,
4.2. In addition, the computational complexities of non-perturbative
solutions of combinatorial Dyson–Schwinger equations are consid-
ered where some new complexity parameters together with systems
of graph languages are built and developed [25, 27]. They are use-
ful tools to optimize the construction processes of infinite random
graphs which encode solutions of quantum motions [25, 26]. Thanks
to these background, it is now possible to associate some complex-
ity parameters to correlations between separated regions in Hcut

FG(Φ).
It leads us to recognize the optimal transitional processes between
space-time separated particles at different qft-states.
• We built a new lattice of Lie subgroups which encodes quantum

entanglement (i.e. Corollaries 4.1 and 4.2). It allows us to deter-
mine intermediate algorithms which contribute to the structure of
correlations between separated regions of space-time.
• The Connes–Marcolli universal category of flat equi-singular vector

bundles encodes all physical information of renormalizable physi-
cal theories and also, quantum motions via systems of differential
equations [9, 32]. This category plays a fundamental role to relate
quantum field theory to theory of motives. Theorem 5.3 and Corol-
laries 5.4 and 5.5 show that this category is rich enough to encode
quantum entanglement in gauge filed theories under different energy
scales.
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